Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations
نویسندگان
چکیده
منابع مشابه
Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...
متن کاملTwo-dimensional Nonlinear Boundary Value Problems for Elliptic Equations
Boundary regularity of solutions of the fully nonlinear boundary value problem F(x,u,Du, D2u) = 0 inn, G(x,u, Du) = 0 on dO is discussed for two-dimensional domains Q. The function F is assumed uniformly elliptic and G is assumed to depend (in a nonvacuous manner) on Du. Continuity estimates are proved for first and second derivatives of u under weak hypotheses for smoothness of F, G, and 0. In...
متن کاملPeriodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملAdaptive absorbing boundary conditions for Schrödinger-type equations: Application to nonlinear and multi-dimensional problems
We propose an adaptive approach in picking the wave-number parameter of absorbing boundary conditions for Schrödinger-type equations. Based on the Gabor transform which captures local frequency information in the vicinity of artificial boundaries, the parameter is determined by an energy-weighted method and yields a quasi-optimal absorbing boundary conditions. It is shown that this approach can...
متن کاملAbsorbing boundary conditions for nonlinear Schrödinger equations.
A local time-splitting method (LTSM) is developed to design absorbing boundary conditions for numerical solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary conditions are significant for numerical simulations of propagations of nonlinear waves in physical applications, such as nonlinear fiber optics and Bose-Einstein condensations. Numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2018
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2017.11.001